SYNTHESIS RXNS:

- Look for UNCOMBINED elements; combine them!

- Just make sure that you give each element in the product compound a sensible oxidation number.

- Oxide formation falls under this category! (ch 8)

EX:

- A piece of barium is placed in oxygen gas. Ba + $O_2 \rightarrow BaO$

* Every element, whether metal or nonmetal, can form an oxide if reacted with oxygen or air!

- A piece of solid sodium is placed in hydrogen gas. Na + H₂ \rightarrow NaH
- Solid magnesium is heated in nitrogen gas. Mg + N₂ \rightarrow Mg₃N₂

DECOMPOSITION RXNS:

- Look for just ONE reactant and break it apart.
- Common gases and simple salts are very stable and are, hence, very common decomposition products.
- EX:
- Solid calcium carbonate is heated.
- $CaCO_3 \rightarrow CaO + CO_2$

* Carbonates always decompose into the metal oxide and CO₂!!

- A sample of solid ammonium carbonate is heated. (NH₄)₂CO₃ \rightarrow NH₃ + CO₂ + H₂O

* You see? In decomposition rxns, COMMON

substances are usually formed.

* It's called – MAKE AN EDUCATED GUESS!!

- Solid calcium sulfite is heated in a vacuum. CaSO₃ \rightarrow CaO + SO₂

** NOTICE, DECOMP & SYNTHESIS RXNS <u>DON'T</u> OCCUR IN AN AQ SOLN!! <u>NO</u> SEPARATING INTO IONS!!!!!!

GAS FORMATION & REGULAR PRECIPITATION RXNS:

- Look for the combination of TWO compounds.
- For a reaction to occur, a PRECIPITATE or a GAS must be produced.
- The following two tables should help you recognize and predict products.

Review of Solubility Rules SOLUBLE CMPDS:

- 1. ALL alkali metals are soluble.
- 2. ALL ammonium salts (NH_4^+) are soluble.
- 3. ALL salts containing the nitrate (NO₃⁻), chlorate (ClO₃⁻), perchlorate (ClO₄⁻), bicarbonate (HCO₃⁻) and acetate (CH₃COO⁻) ions are soluble.
- 4. Most chlorides (Cl), bromides (Br), and iodides (I) are soluble. *Exceptions*: cmpds containing Ag⁺, Pb²⁺, and Hg2²⁺(PMS).
- Most sulfates (SO₄²⁻) are soluble. *Exceptions:* sulfates of Pb, Hg, Ba, Sr. CaSO₄ and Ag₂SO₄ are slightly soluble. (PMS CaBaSr, not so soluble) INSOLUBLE CMPDS:
- Most metal oxides and hydroxides are insoluble. (Unless bonded with Alkali metals, Ba²⁺ and Sr²⁺) *Exceptions:* CaO and Ca(OH)₂ are slightly soluble.
- 2. Most metal carbonates (CO₃²⁻), phosphates (PO₄³⁻), sulfides (S²⁻) are insoluble.
 - (Unless bonded with soluble compounds 1-2 above).

Common Casas Formad

Common Guses Formed				
GAS	Formed by rxnEquation forof Acids withformation:			
H ₂ S	Sulfides $2H^+ + S^{2-} \rightarrow H_2S(g)$			
CO_2	Carbonates $2H^+ + CO_3^2 \rightarrow H_2O + CO_2(g)$			
	Bicarbonates $H^+ + HCO_3^- \rightarrow H_2O + CO_2(g)$			
SO_2	Sulfites $2H^+ + SO_3^{2-} \rightarrow H_2O + SO_2(g)$			
	Hydrogen Sulfites $H^+ + HSO_2^- \rightarrow H_2O + SO_2$ (g)			
HCN	Cyanides $H^+ + CN^- \rightarrow HCN(g)$			
GAS	Formed by rxn of of Bases withEquation for formation:			
NH ₃	Ammonium salts $NH_4^+ + OH^- \rightarrow NH_3(g) + H_2O$			

EX:

- Solutions of cobalt (II) nitrate and sodium hydroxide are mixed.
 Co²⁺ + OH → Co(OH)₂
- Sodium hydrogen sulfite is added to a vinegar soln.
 NaHSO₃. + HCH₃COO → H₂SO₃ + NaCH₃COO HSO₃.⁻ + HCH₃COO → H₂O + SO₂ + CH₃COO⁻
- Ammonium nitrate is mixed with barium hydroxide. $NH_4NO_3 + Ba(OH)_2 \rightarrow NH_4OH + Ba(NO_3)_2$ $NH_4^- + OH^- \rightarrow NH_3 + H_2O$

SINGLE REPLACEMENT RXNS:

- Look for an element reacting with a cmpd. Two different types:
- 1. **Metal Replacements** a more reactive metal (in the free state) displaces a less reactive metal in a salt (ion form) or hydrogen from water or an acid

** in the equation section, all reaction proceeds, so you don't have to worry too much about consulting the activity series.

EX:

- A bar of zinc is immersed in a solution of silver nitrate.

 $Zn + Ag^+ \rightarrow Zn^{2+} + Ag$

- Iron filings are placed in a solution of iron (III) sulfate. Fe + Fe³⁺ \rightarrow Fe²⁺

* A little bizarro! Differing oxidation states of iron are both changed to an intermediate state.

* JUST WATCH YOUR CHARGES WITH SINGLE REPLACEMENT!! Free Metals <u>do not</u> have a charge!!

<u>NOTE</u>: The following transition metals, Cu, Ag, Pb, Au, and Pt, are NOT REACTIVE ENOUGH to displace H from acids (or water). They undergo a fancy, gas forming, redox reactions with oxoacids:

Metal + Oxoacid → Metal ion + Oxide gas +

EX:

A piece of copper is immersed in *dilute* nitric acid.

 $Cu + H^+ + NO_3 \rightarrow Cu^{2+} + NO + H_2O$

* NO₂ would have been produced in a concentrated soln.

A piece of lead is placed in concentrated warm H₂SO₄.

- Pb + H⁺ + HSO₄ → Pb²⁺ + SO₂ (g) + H₂O or Pb + H⁺ + SO₄²⁼ → Pb²⁺ + SO₂ (g) + H₂O * not so picky about how you dissociate diprotic acids....
- 2. **Nonmetal displacements** a more reactive nonmetal in free state displaces a less reactive nonmetal in a compound.

EX:

- Bromine was added to a solution of potassium iodide. Br₂ + I⁻ \rightarrow Br⁻ + I₂

* Halogen activity series: F>Cl>Br>1....this explains why you virtually never find pure, elemental fluorine!

REACTIONS THAT INVOLVE WATER:

- 1. A pure metal or a metal hydride will react with water to produce a BASE and hydrogen gas.
- Just hydrogen displacement reactions!
- Hydrides react the same way free metals do! Just accept it, man!!!

EX:

- Sodium metal is added to distilled water. Na + H₂O \rightarrow Na⁺ + OH⁻ + H₂
- * any of the alkali metals and most alkaline Earth metal would react the same!
- * such metals are high enough on activity series

to displace hydrogen from water.

- Solid calcium hydride is added to water. CaH₂ + H₂O \rightarrow Ca(OH)₂ + H₂
- * See! Hydrides DO react just like the neutral metals!

2. A metal oxide in water will produce a BASE.

Metal oxides are called BASIC ANHYDRIDES. EX:

- Solid potassium oxide is added to water. $K_2O + H_2O \rightarrow K^+ + OH^-$
- Solid calcium oxide is added to distilled water.
 CaO + H₂O → Ca(OH)₂ (strong, but not very soluble Confused? Ask me!)
- * notice the role of solubility rules in the following two examples!
- **3.** A nonmetal oxide in water will produce an ACID.
- Nonmetal oxides are called ACID ANHYDRIDES.
- As you hopefully remember from your notes, nonmetal oxides + water produce the common acids. YOU NEED TO KNOW THESE! Refer to your book and your notes!!!!

EX:

- Solid dinitrogen pentoxide is added to water. $N_2O_5 + H_2O \rightarrow H^+ + NO_3^-$

* formation of nitric acid!

- Carbon dioxide is bubbled through water. $CO_2 + H_2O \rightarrow H_2CO_3$
- * formation of carbonic acid.
- * Notice how strong acid dissociate 100% and weak acids don't,

ACID-BASE REACTIONS:

1. Acid + Base Neutralization

- Really just DOUBLE DISPLACEMENT RXNS.
- Always involves a proton transfer. Acid donates an H^+ to a base!

EX:

Equal molar amounts of potassium hydroxide and hydrochloric acid are mixed. KOH + HCl \rightarrow KCl + H₂O K⁺ + OH + H⁺ + Cl \rightarrow K⁺ + Cl + H₂O

$$H^+ + OH^- \rightarrow H_2O$$

- * Strong acid + strong base will <u>always</u> react this way.
- * Just a double replacement.....

- A soln of sodium hydroxide is added to a solution of acetic acid.
 - NaOH + HC₂H₃O₂ \rightarrow NaC₂H₃O₂ + H₂O Na⁺ + OH + HC₂H₃O₂ \rightarrow Na⁺ + C₂H₃O₂ + H₂O OH + HC₂H₃O₂ \rightarrow C₂H₃O₂ + H₂O
- * Weak acid + strong base.

* Just a double replacement keeping in mind weak acids don't dissociate all the way.

- Equal volumes of equimolar solutions of phosphoric acid and potassium hydroxide are mixed.
 H₃PO₄ + OH⁻ → H₂PO₄⁻ + H₂O
- * Weak acid + strong base

* "Equimolar" means 1:1, So, in this case, only enough OH to neutralize ONE of H_3PO_4 acidic protons. "An excess" amount of KOH would offer enough OH to neutralize ALL of the H^+get it???

- Solutions of ammonia and sulfuric acid are mixed.
 NH₃ + H⁺ → NH₄⁺
- * Strong acid + weak base.
- Solutions of ammonia and carbonic acid are mixed. H₂CO₃ + NH₃ → ??? Remember...NH₃ + H₂O → NH₄OH So it's really... NH₄OH + H₂CO₃ → H₂O + NH₄⁺ + HCO₃⁻
- * Weak acid and weak base.

2. Acid + Basic Salt Neutralization EX:

- Excess hydrochloric acid is added to a solution of potassium sulfide.
 - $H^+ + S^{2=} \rightarrow H_2S$

* "excess" indicates that there is enough H^+ to form H_2S instead of just HSseems logical, don't you think?

3. Acid Anhydride + Base Neutralization:

- We did these reactions in class
- Reactions occur in TWO steps.
- Acid anhydrides will become acids in solution.
- This is as hard as Acid-Base rans can get!

EX:

- Carbon dioxide gas is bubbled through a potassium hydroxide solution.
 - 1. What will carbon dioxide do in water? $CO_2 + H_2O \rightarrow H_2CO_3$
 - 2. React acid with base like normal. $H_2CO_3 + KOH \rightarrow H_2O + KHCO_3 (or K_2CO_3)$ $H_2CO_3 + OH \rightarrow H_2O + HCO_3 (or CO_3^{2-})$
- Carbon dioxide gas and ammonia gas are bubbled into distilled water.
 - $_{1.}$ CO₂ + H₂O \rightarrow H₂CO₃

2. $H_2CO_3 + NH_3 \rightarrow NH_4^+ + HCO_3^-$ (or CO_3^{2-})

4. Lewis Acid-Base Rxns

- Lewis Acid-Base reactions involve the transfer of a pair of e s.
- They result in the formation of a coordinate covalent bond.
- B and Al cmpds often act as LEWIS ACIDS b/c they are e deficient. N family cmpds often act as LEWIS BASES cuz they have a extra lone pair of e to donate.

EX:

- phosphine (phosphorus trihydride) gas is bubbled into liquid boron trichloride.
 PH₃ + BCl₃ → H₃P:BCl₃
- The gases boron trifluoride and ammonia are mixed.
 BF₃ + NH₃ → F₃B:NH₃

COMBUSTION RXNS:

- A cmpd reacting with oxygen (air).
- The cmpd is often a hydrocarbon.
- EX:
- Ethane is burned in air. $2C_2H_6 + 7O_2 \rightarrow 4CO_2 + 6H_2O$
- Carbon disulfide is burned in excess oxygen. $CS_2 + O_2 \rightarrow CO_2 + SO_2$

* the word "excess" indicates that there is enough oxygen to form CO_2 rather than CO.

<u>Note</u>: If you know a reaction is a combustion reaction but you are not sure of the formula for the reactant, just write the products which you know to be $CO_2 + H_2O....$

OR, sometimes products will appear as . . . $XO_2 + H_2O$

EX: Hydrogen sulfide is combusted in excess oxygen.

 $2H_2S(g) + 3O_2(g) \rightarrow 2SO_2(g) + 2H_2O(g)$

Common Oxia	lizers
Oxidizer	What it
	turns into:
MnO_4 acid soln	Mn^{2+}
MnO_2 acid soln	Mn^{2+}
MnO_4 neut or basic so	oln MnO ₂
$\operatorname{Cr_2O_7^{2-}}$ acid	Cr^{3+}
$Cr_2O_7^{2-}$ base	$\operatorname{CrO_4}^{2-}$
HNO ₃ , conc.	NO_2
HNO ₃ , dilute	NO
H_2SO_4 , hot, conc.	SO_2
Free Halogens	Halide ion
Na ₂ O ₂	NaOH
HClO ₄	Cl

FUNKY REDOX: OIL-RIG (LEO SAYS GER)

- If the reaction doesn't fit any of the above categories, Funky Redox is probably the call.
- Being familiar with the following lists of COMMON OXIDIZERS and COMMON REDUCERS will help
- you recognize funky redox rxns and predict products.
- JUST REMEMBER, ONE ATOM GETS OXIDIZED, AND ONE ATOM GET REDUCED!!

Common Reducers

Reducers	What it turns into
Halide ions	Free halogen
Free Metals	Metal ions
Sulfite ions (or SO ₂)	Sulfate ions
Nitrite ions	Nitrate ions
Free halogens, Br ₂ (dil. Basic soln)	Hypohalite ions, BrO
Free halogen, Br ₂ (conc. Basic soln)	Halate ions, BrO ₃
Oxalate ion, $C_2O_4^{2-}$	CO_2
H_2O_2	O ₂

EX:

- an acidified solution of potassium permanganate is added to a solution of sodium sulfite.
 - H^{+} + MnO_4^{-} + $SO_3^{2^-}$ → Mn^{2^+} + $SO_4^{2^-}$ + H_2O Oxidizing agent: MnO_4^{-} (Mn^{7^+} to Mn^{2^+}) Reducing agent: $SO_3^{2^-}$ (S^{4^+} to S^{6^+})
- A solution of potassium permanganate is mixed with an alkaline solution of sodium nitrite.
- $MnO_4^{-} + OH^{-} + NO_2^{-} \rightarrow NO_3^{-} + H_2O + MnO_2 (s)$
- * Notice, the effect of being in an acidic vs basic soln!
- A stream of chlorine gas is passed through a solution of cold, dilute sodium hydroxide.
 Cl₂ + OH⁻ → OCl⁻ + Cl⁻ + H2O
- * This is an example of a disproportionation reaction!

SUGGESTIONS:

- Try to figure out what type of soln acidic, basic, or neutral the redox reaction is taking place in.
- If acidic, add H⁺; if basic, add OH⁻
- Add a water molecule to the side *opposite* the H⁺ or OH (usually the product side).

COMPLEX ION FORMATION:

- Transition metal ions commonly form complex ions with the following molecules or ions: NH₃, CN, I, Br, OH, SCN (thiocyanate ion), H₂O.
- How many molecules or ions that will bond to the metal is twice that of the metal's charge.
- These rxns are sort a like a single replacement rxn. A molecule or ion replaces another molecule or ion on the transition metal. Note this as you look at the examples!

EX:

- Excess sodium cyanide solution is added to a solution of silver nitrate.
 - $CN^{-} + Ag^{+} \rightarrow Ag(CN)_{2}^{-}$

* Notice, a CHARGED ion does affect the charge of the transition metal.

- Excess concentrated ammonia solution is added to a suspension of silver chloride.
 - $AgCl + NH_3 \rightarrow Ag(NH_3)_2^+ + Cl^=$

* A neutral molecule, such as NH₃, has no affect on the charge of the metal or the resulting complex ion's charge.

- A concentrated solution of ammonia is added to a solution of zinc iodide.
- $Zn^{2+} + NH_3 \rightarrow [Zn(NH_3)_4]^{2+}$

ORGANIC:

- We will not have much time in class to focus on organic at all. You will come across some organic rxns for sure but only a very small percentage.
- A lot of organic is just memorization and proper naming of HYDROCARBONS.

Naming of Hydrocarbons Summary

ALKANES

Hydrocarbons that contain only single bonds. Known as SATURATED hydrocarbons.

la

Alkane (C _n H _{2n+2})	Formu
Methane	CH_4
Ethane	C_2H_6
Propane	C_3H_8
Butane	C_4H_{10}
Pentane	$C_{5}H_{12}$

<u>ALKENES</u> Hydrocarbons that contain double bonds. Known as UNSATURATED hydrocarbons.

Alkene (C _n H _{2n})	Formula
Ethylene	C_2H_4
Propene (propylene)	C_3H_6

Naming of Hydrocarbons Summary Cont.

<u>ALKYNES</u> Hydrocarbons that contain triple bonds. Considered Unsaturated hydrocarbons as well.

Alkyne (C _n H _{2n-2})	Formula
Ethyne (acetylene)	C_2H_2
Propyne	C_3H_4

<u>ALCOHOLS</u> Alcohols are hydrocarbons where one of the hydrogens has been replaced by a hydroxyl group (-OH).

Formula
CH ₃ OH
C ₂ H ₅ OH
C ₃ H ₇ OH

* Hopefully, you are starting to get a feel for the PREFIXES that are used. 1 C = Meth-; 2 C's = Eth-;
3 C's = Prop-; 4 C's = But-; 5 C's = Pent-; 6 C's =Hex-;
7 C's = Hept; 8 C's = Oct

* As for reactivity, combustion of such organic cmpds are very common.

YOU ARE ALL WINNERS. . . The End!!!

P.S. PLEASE DO NOT FORGET TO ACTUALLY USE THIS HANDOUT!