PRACTICE TEST/THERMOCHEMISTRY/AP CHEMISTRY

1.

a) Calculate the amount of heat transferred when 10.00 g of $\mathrm{N}_{2} \mathrm{O}(\mathrm{g})$ is formed by the following reaction:

$$
2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O} 2(\mathrm{~g}) \rightarrow 2 \mathrm{~N} 2 \mathrm{O}(\mathrm{~g}) \quad \Delta \mathrm{Hrxn}=+163.2 \mathrm{~kJ}
$$

b) Draw an energy diagram for this process.
2. Predict the value for ΔH° f for the following scenarios:
a) $\mathrm{Br}(\mathrm{g})$
b) $\mathrm{Br}(\mathrm{I})$
c) $12(\mathrm{~g})$
d) $12(\mathrm{~s})$
3. Calculate the $\Delta H r \times n$ for the following reaction:

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$$
\begin{aligned}
& \Delta \mathrm{H}^{\circ} \mathrm{f} 2 \mathrm{H} 4(\mathrm{~g})=226.6 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta \mathrm{H}^{\circ} \mathrm{f} \mathrm{CO} 2(\mathrm{~g})=-393.5 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta \mathrm{H}^{\circ} \mathrm{f} \mathrm{H} 2 \mathrm{O}(\mathrm{I})=-285.8 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

4. A 5.00 g sample of liquid water at $25.0^{\circ} \mathrm{C}$ is heated by the addition of 84.0 J of energy. The final temperature of the water is \qquad ${ }^{\circ} \mathrm{C}$. The specific heat capacity of the liquid is $4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$.
a) -21
b) 4.02
C) 25.2
d) 95.2
e) 29.0
5. This problem was taken directly fram the 1995 Ap ghem. exam. Propane is a hydrocarbon that is commonly used as a fuel for cooking. Propane's formula is C 3 H 8 .
a) Write a balanced equation for the complete combustion of propane gas.
b) Calculate the volume of air at $30^{\circ} \mathrm{C}$ and 1.00 atm that is needed to burn completely و 10.0 of propane. Assume that air is $21.0 \% \mathrm{O} 2$ by volume.
c) The heat of combustion ($\Delta \mathrm{H}^{\circ}$ combustion) is $-2,220.1 \mathrm{~kJ} / \mathrm{mol}$. Calculate the heat of formation, $\Delta \mathrm{H}^{\circ}$ f, of propane given that $\Delta \mathrm{H}_{\mathrm{f}}$ of $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ is $-285.3 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{f}}$ of $\mathrm{CO} 2(\mathrm{~g})$ is $-393.5 \mathrm{~kJ} / \mathrm{mol}$.
d) Assuming that all of the heat evolved burning 10.0 g propane is transferred to 8.00 kg of water (specific heat $=4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$), calculate the increase in temperature of the water.

ANSWERS TO PRACTICE TEST:

1.

a) 10.00 g of $\mathrm{N} 2 \mathrm{O}(\mathrm{g}) \times 1 \mathrm{~mol} \mathrm{N2O}(\mathrm{~g}) / 44.02 \mathrm{~g} \times 163.2 \mathrm{~kJ} / 2$ moles $\mathrm{N} 2 \mathrm{O}(\mathrm{g})=18.54 \mathrm{~kJ}$ (endothermic)
b) ENERGY DIAGRAM:

2.
a) $\mathrm{Br} 2(\mathrm{~g})$ is >0 This is because elemental Br 2 is a liquid. Therefore, energy must be added (+) to the liquid in order for it to become a gas.
b) $\operatorname{Br2}(\mathrm{I})=\mathrm{o} \quad$ This is because it is in its pure elemental form.
c) $\operatorname{I2}(g)=>0 \quad$ This is because elemental IL is a solid. Therefore, energy must be added (+) to the solid in order for it to become a gas.
d) $12(s)=0 \quad$ This is because it is in its pure elemental form.
3.
$\Delta H^{\circ} \mathrm{rxn}=\Sigma \mathrm{n} \Delta \mathrm{H}^{\circ} \mathrm{f}($ products $)-\Sigma \mathrm{m} \Delta \mathrm{H}^{\circ} \mathrm{f}$ (reactants)
$\Delta H^{\circ} \mathrm{rxn}=\Sigma 2\left[\left(\Delta \mathrm{H}^{\circ} \mathrm{f} \mathrm{CO}_{2}(\mathrm{~g})\right)+2\left(\Delta \mathrm{H}^{\circ} \mathrm{f} \mathrm{H}_{2} \mathrm{O}(\mathrm{I})\right)\right]-\left[1\left(\Delta \mathrm{H}^{\circ} \mathrm{f} \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})\right)+3\left(\Delta \mathrm{H}^{\circ} \mathrm{f} \mathrm{O}_{2}(\mathrm{~g})\right)\right]$
$\Delta \mathrm{H}^{\circ} \mathrm{rxn}=[2(-393.5 \mathrm{~kJ} / \mathrm{mol})+2(-285.3 \mathrm{~kJ} / \mathrm{mol})]-[1(226.6 \mathrm{~kJ} / \mathrm{mol})+3(0)]$
$\Delta \mathrm{H}^{\circ} \mathrm{rxn}=(-787.0 \mathrm{~kJ}+-570.6 \mathrm{~kJ})-(226.6 \mathrm{~kJ} / \mathrm{mol})=-1584.2 \mathrm{~kJ} / \mathrm{mol}$ of C 2 H 4 combusted
4.

The answer is E .
Work:

$$
\begin{array}{ll}
\mathrm{q}=(\mathrm{ms} \mathrm{\Delta T}) \quad 84.0 \mathrm{~J}=\left[(5.00 \mathrm{~g})\left(4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)\left(\mathrm{T}_{f}-25.0^{\circ} \mathrm{C}\right)\right] \\
84.0 \mathrm{~J}=\left(20.92 \mathrm{~J} /{ }^{\circ} \mathrm{C}\right)\left(\mathrm{T}_{f}-25.0^{\circ} \mathrm{C}\right) \\
84.0 \mathrm{~J}=-20.92 \mathrm{~T}_{f}-523 \mathrm{~J} \\
607 \mathrm{~J}=-20.92 \mathrm{~T}_{\mathrm{f}} \quad \mathrm{Tf}=29.0^{\circ} \mathrm{C}
\end{array}
$$

5.

a) $\mathrm{C}_{3} \mathrm{H} 8(\mathrm{l})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
b) we haven't done gas laws yet, but
10.0 و $\mathrm{C}_{3} \mathrm{H} 8 \times 1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H} 8 / 44.11 \mathrm{C} 3 \mathrm{H} 8 \times 5 \mathrm{~mol} \mathrm{O}_{2} / 1 \mathrm{~mol} \mathrm{C} 3 \mathrm{H} 8=1.13 \mathrm{moles} \mathrm{O}_{2}=$ moles pure O_{2} needed.

Since the ideal gas law says, $P V=n R T$
($p=$ pressure in atm, $V=$ volume in $L, n=$ moles, R is a constant, and $T=$ temperature in Kelvin)
So, $V=n R T / P$
V of pure $\mathrm{O}_{2}=1.13 \mathrm{moles}(0.0821 \mathrm{Latm} / \mathrm{molK})(303 \mathrm{~K}) / 1.00 \mathrm{~atm}=28.1$ Liters pure O_{2}
So, if O 2 is 21.0% of air . . .
$(X$ Liters of air $)(.210)=28.1 \quad 28.1 / .210=134$ Liters of air.
c) $\mathrm{C}_{3} \mathrm{H} 8(\mathrm{l})+5 \mathrm{O} 2(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad \Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}=-2,220.1 \mathrm{~kJ} / \mathrm{mol}$
$\Delta H^{\circ}{ }_{r x n}=\Sigma n \Delta H^{\circ} f$ products $-\Sigma m \Delta H^{\circ} f$ reactants
$-2,220.1 \mathrm{~kJ} / \mathrm{mol}=[3(-393.5 \mathrm{~kJ})+4(-285.3 \mathrm{~kJ})]-\left[\Delta \mathrm{H}^{\circ} \mathrm{f} \mathrm{C} 3 \mathrm{H} 8+5(\mathrm{okJ})\right]$
$-2,220.1 \mathrm{~kJ} / \mathrm{mol}=[-1180.5 \mathrm{KJ}+-1141.2 \mathrm{~kJ}]-\Delta \mathrm{H}^{\circ} \mathrm{f} \mathrm{C} 3 \mathrm{H} 8$
$-2,220.1 \mathrm{~kJ} / \mathrm{mol}=-2321.7 \mathrm{~kJ}-\Delta \mathrm{H}^{\circ} \mathrm{f} \mathrm{C} 3 \mathrm{H} 8 \quad \rightarrow \quad \Delta \mathrm{H}^{\circ} \mathrm{fC} \mathrm{C}_{3} \mathrm{H} 8=-101.6 \mathrm{~kJ} / \mathrm{mol}$
d) 10.0 و $\mathrm{C}_{3} \mathrm{H} 8 \times 1 \mathrm{~mol} \mathrm{C} 3 \mathrm{H} 8 / 44.11 \mathrm{~g} \times-2220.1 \mathrm{~kJ} / 1 \mathrm{~mol}=-503.3 \mathrm{~kJ}$
$\mathrm{qrxn}=-\left(\mathrm{q} \mathrm{H}_{2} \mathrm{O}+\mathrm{qcal}\right)$ there is na calarimeter heat capagity pravided, so amit this . .
$\mathrm{qrxn}=-(\mathrm{qH} 2 \mathrm{O}) \quad \rightarrow \quad-503,000 \mathrm{~J}=-\left[(8.00 \mathrm{~kg} \times 1000 \mathrm{~g} / \mathrm{kg})\left(4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)(\Delta \mathrm{T})\right.$
$-503,000 \mathrm{~J}=-33472 \mathrm{~J} /{ }^{\circ} \mathrm{C} \Delta \mathrm{T} \quad \rightarrow \quad 15.0^{\circ} \mathrm{C}=\Delta \mathrm{T}$

