PRACTICE TEST/THERMOCHEMISTRY/AP CHEMISTRY

- 1.
- a) Calculate the amount of heat transferred when 10.00 g of N2O(g) is formed by the following reaction:

 $2N_2(g) + O_2(g) \rightarrow 2N_2O(g)$ $\Delta Hrxn = +163.2 \text{ kJ}$

- b) Draw an energy diagram for this process.
- 2. Predict the value for $\Delta H^{\circ}f$ for the following scenarios:
 - a) Br2(g)
 - b) Br2(l)
 - c) l2(g)
 - d) I2(s)
- 3. Calculate the Δ Hrxn for the following reaction:

 $C_{2}H_{4}(g) + 3O_{2}(g) \rightarrow 2CO_{2}(g) + 2H_{2}O(I)$

 $\Delta H^{\circ}f$ C2H4(g) = 226.6 kJ/mol $\Delta H^{\circ}f$ CO2(g) = -393.5 kJ/mol $\Delta H^{\circ}f$ H2O(l) = -285.8 kJ/mol

 A 5.00 g sample of liquid water at 25.0°C is heated by the addition of 84.0 J of energy. The final temperature of the water is ______°C. The specific heat capacity of the liquid is 4.18 J/g°C.

a) -21 b) 4.02 c) 25.2 d) 95.2 e) 29.0

- 5. THIS PROBLEM WAS TAKEN DIRECTLY FROM THE 1995 AP CHEM. EXAM. Propane is a hydrocarbon that is commonly used as a fuel for cooking. Propane's formula is C3H8.
 - a) Write a balanced equation for the complete combustion of propane gas.
 - b) Calculate the volume of air at 30°C and 1.00 atm that is needed to burn completely 10.0 g of propane. Assume that air is 21.0% O2 by volume.
 - c) The heat of combustion ($\Delta H^{\circ}_{combustion}$) is -2,220.1 kJ/mol. Calculate the heat of formation, ΔH°_{f} , of propane given that ΔH_{f} of H2O(l) is -285.3 kJ/mol and ΔH°_{f} of CO2(g) is -393.5 kJ/mol.
 - d) Assuming that all of the heat evolved burning 10.0 g propane is transferred to 8.00 kg of water (specific heat = 4.184 J/g°C), calculate the increase in temperature of the water.

1.

a) 10.00 g of N2O(g) X 1 mol N2O(g)/44.02 g X 163.2 kJ/2 moles N2O(g) = 18.54 kJ (endothermic) b) ENERGY DIAGRAM:

2.

a) Br2(g) is > 0 This is because elemental Br2 is a liquid. Therefore, energy must be added (+) to the liquid in order for it to become a gas.

b) Br2(l) = 0 This is because it is in its pure elemental form.

c) $I_2(g) = > 0$ This is because elemental I_2 is a solid. Therefore, energy must be added (+) to the solid in order for it to become a gas.

d) I2(s) = 0 This is because it is in its pure elemental form.

```
3.

\Delta H^{\circ}rxn = \Sigma n \Delta H^{\circ}f (products) - \Sigma m \Delta H^{\circ}f (reactants)
```

```
\Delta H^{\circ} rxn = \Sigma_{2}[(\Delta H^{\circ} f CO_{2}(g)) + 2(\Delta H^{\circ} f H_{2}O(I))] - [1(\Delta H^{\circ} f C_{2}H_{4}(g)) + 3(\Delta H^{\circ} f O_{2}(g))]
```

```
\Delta H^{\circ}rxn = [2(-393.5 \text{ kJ/mol}) + 2(-285.3 \text{ kJ/mol})] - [1(226.6 \text{ kJ/mol}) + 3(0)]
```

```
\Delta H^{\circ}rxn = (-787.0 \text{ kJ} + -570.6 \text{ kJ}) - (226.6 \text{ kJ/mol}) = -1584.2 \text{ kJ/mol of C2H4 combusted}
```

4.

The answer is E.

Work:

q = (ms
$$\Delta$$
T)
84.0 J = [(5.00 g)(4.184 J/g°C)(T_f - 25.0°C)]
84.0 J = (20.92 J/°C)(T_f - 25.0°C)
84.0 J = -20.92 T_f - 523 J
607 J = -20.92T_f Tf = 29.0°C

5. a) $C_3H8(I) + 5O_2(q) \rightarrow 3CO_2(q) + 4H_2O(I)$ b) we haven't done gas laws yet, but 10.0 g C3H8 X 1 mol C3H8/44.11 g C3H8 X 5 mol O2/1 mol C3H8 = 1.13 moles O2 = moles pure O2 needed. Since the ideal gas law says, PV = nRT(p=pressure in atm, V = volume in L, n = moles, R is a constant, and T = temperature in Kelvin)So, V = nRT/PV of pure $O_2 = 1.13$ moles(0.0821Latm/molK)(303K)/1.00 atm = 28.1 Liters pure O_2 So, if O2 is 21.0% of air (X Liters of air)(.210) = 28.128.1/.210 = 134 Liters of air. c) $C_3H8(l) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(l)$ ΔH°_{rxn} = -2,220.1 kJ/mol $\Delta H^{\circ}_{rxn} = \Sigma n \Delta H^{\circ} f \text{ products} - \Sigma m \Delta H^{\circ} f \text{ reactants}$ $-2,220.1 \text{ kJ/mol} = [3(-393.5 \text{ kJ}) + 4(-285.3 \text{ kJ})] - [\Delta H^{\circ}f (-285.3 \text{ kJ})]$ -2,220.1 kJ/mol = [-1180.5 kJ + -1141.2 kJ] – ΔH°f C3H8 $-2,220.1 \text{ kJ/mol} = -2321.7 \text{ kJ} - \Delta \text{H}^{\circ}\text{f} \text{ C}_3\text{H8}$ $\Delta H^{\circ}f C_{3}H8 = -101.6 \text{ kJ/mol}$ \rightarrow d)10.0 g C3H8 X 1 mol C3H8/44.11 g X -2220.1 kJ/1mol = -503.3 kJ qrxn = -(qH2O + qcal) THERE IS NO CALORIMETER HEAT CAPACITY PROVIDED, SO OMIT THIS . . $qrxn = -(qH_2O)$ $-503,000 \text{ J} = -[(8.00 \text{ kg X } 1000 \text{ g/kg})(4.184 \text{ J/g}^{\circ}\text{C})(\Delta\text{T})]$ \rightarrow \rightarrow 15.0°C = ΔT -503,000 J = -33472 J/°C ∆T