PRACTICE \#6 Titration/Miscellaneous AQ Chemistry Practice Problems
1.
50.10 mL of 0.0123 M sodium hydroxide was used to titrate 35.15 mL of an HCl solution of unknown molarity. What is the molarity of the HCl ?

2.

Baking soda can be used to neutralize an acid spill in chem lab according to the following equation:
$\mathrm{NaHCO}_{3}(\mathrm{~s})+\mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{CO} 2(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
If 30.00 mL of 5.00 M Nitric acid were spilled, how many grams of baking soda would it take to neutralize the acid?
3.

If it took 130.50 mL of 3.50 M HCl to completely neutralize 250 mL of an unknown NaOH solution.
A) What is the molarity of the NaOH solution?
B) How would you physically make this solution (the base)?
4.

A 100.0 mL sample of acidified dichromate ions of unknown molarity were titrated with a 0.100 M solution of iron(II)chloride. If 43.2 mL of iron(II)chloride were used to fully react the dichromate:
A) What is the balanced net ionic equation for this reaction?
B) What is the molarity of the dichromate ions?
C) What is the concentration of the dichromate ions in ppm (parts per million)? Hint: 1 PPm = 0.001g/1 Liter of volume \ldots Or, one milligram/L
5.

A 100.0 mL sample of Pb^{2+} ions of unknown concentration were titrated with 0.100 M HCl .
A) What is the concentration of the Pb^{2+} in parts per million (see \#4) if 0.01249 of PbCl 2 (s) were collected after filtering and drying?
B) What volume of HCl was used to produce this solid?

ANSWERS:

1. $\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
$50.10 \mathrm{~mL} \times 1 \mathrm{~L} / 1000 \mathrm{~mL} \times 0.0123 \mathrm{~mol} \mathrm{NaOH} / \mathrm{L}=6.16 \times 10^{-4} \mathrm{~mol} \mathrm{OH}^{-}$
$6.16 \times 10^{-4} \mathrm{~mol} \mathrm{OH}==\mathrm{mol} \mathrm{H}^{+}=\times \mathrm{mol} \mathrm{H} / \mathrm{L} \times 35.15 \mathrm{~mL} \times 1 \mathrm{~L} / 1000 \mathrm{~mL}$
$=0.0175 \mathrm{M} \mathrm{HCl}$
2. $\mathrm{NaHCO}_{3}(\mathrm{~s})+\mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$30.00 \mathrm{~mL} \times 1 \mathrm{~L} / 1000 \mathrm{~mL} \times 5.00 \mathrm{~mol} \mathrm{HNO} 3 / \mathrm{L}=0.150 \mathrm{~mol} \mathrm{HNO} 3$
1:1 rxn, so $0.150 \mathrm{~mol} \mathrm{NaHCO} 3 \times 84.01 \mathrm{~g} \mathrm{NaHCO} 3 / \mathrm{mol}=12.6$ grams
3. A) $\mathrm{nNaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
$130.50 \mathrm{~mL} \times 1 \mathrm{~L} / 1000 \mathrm{~mL} \times 3.50 \mathrm{~mol} \mathrm{HCl} / \mathrm{L}=0.457 \mathrm{~mol} \mathrm{HCl}=$ $\mathrm{mol} \mathrm{OH}^{-}$(1:1 ratio). So, $0.457 \mathrm{~mol} \mathrm{OH}^{-}=250 \mathrm{~mL} \times 1 \mathrm{~L} / 1000 \mathrm{~mL}$ $\times \times \mathrm{mol} \mathrm{OH} / \mathrm{L}=1.83 \mathrm{M} \mathrm{NaOH}$
B) take $0.457 \mathrm{~mol} \mathrm{NaOH} \times 40.00 \mathrm{~g} \mathrm{NaOH} / \mathrm{mol}=18.28$ و NaOH

Place NaOH in a 250.00 mL volumetric flask, dissolve and top up to the mark when cooling is complete.
4.
A) Reduction:
$14 \mathrm{H}^{+}+6 \mathrm{e}^{\prime}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
Oxidation:
$6\left(\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+1 \mathrm{e}^{\prime}\right)$

$$
14 \mathrm{H}^{+}+6 \mathrm{Fe}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightarrow 6 \mathrm{Fe}^{3+}+2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
$$

B) $0.100 \mathrm{~mol} \mathrm{Fe}{ }^{2+} / \mathrm{L} \times 43.2 \mathrm{~mL} \times 1 \mathrm{~L} / 1000 \mathrm{~mL} \times 1 \mathrm{~mol} \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} / 6 \mathrm{~mol} \mathrm{Fe}^{2+}$ $\times 1 / 100.0 \mathrm{~mL} \times 1000 \mathrm{~mL} / 1 \mathrm{~L}=0.00720 \mathrm{MCr}_{2} \mathrm{O}^{2-}$
C) 1 liter has 0.00720 moles $\mathrm{Cr} 2 \mathrm{O}_{7}^{2-}$ so, . 00720 moles $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} / \mathrm{L} \times$

5. A) $0.0124 \mathrm{~g} \mathrm{PbCl} 2 / 100 \mathrm{~mL} \times 1000 \mathrm{~mL} / \mathrm{L} \times 1 \mathrm{~mol} \mathrm{PbCl} 2 / 278.1 \mathrm{~g} \mathrm{PbCl} 2$ $\times 1 \mathrm{~mol} \mathrm{~Pb}^{2+} / 1 \mathrm{~mol} \mathrm{PbCl} 2 \times 207.2 \mathrm{gbb}^{2+} / 1 \mathrm{~mol} \mathrm{~Pb}^{2+} \times 1000 \mathrm{mg} / \mathrm{g} \times$ $1 \mathrm{PPm} / 1 \mathrm{mg} / \mathrm{L}=92.4 \mathrm{PPm}^{2+}$
B) $0.124 \mathrm{~g} \mathrm{PbCl} 2 \times 1 \mathrm{~mol} \mathrm{PbCl} 2 / 278.1 \mathrm{~g} \mathrm{PbCl} 2 \times 2 \mathrm{~mol} \mathrm{HCl} / 1 \mathrm{~mol} \mathrm{PbCl} 2 \times$ $1 \mathrm{~L} / 0.100 \mathrm{~mol} \mathrm{HCl}=8.92 \times 10^{-4}$ liters or 0.892 mL

