PRACTICE \#3 WHAT IS YOUR WEAKEST LINK?

AP CHEMISTRY

We have all heard the old cliché that a chain is only as strong as its weakest link. This is a contingency exercise, meaning that the answers from previously answered problems are used in the remaining questions. Where will you get stuck? What is your weakest link? Try these problems and find out where you need assistance!

1. What is the empirical formula for a compound with the following \% (by mass) composition?: $56.36 \% \mathrm{O}, 43.64 \% \mathrm{P}$ \qquad
2. What is the molecular formula if the molar mass is $283.90 \mathrm{~g} / \mathrm{mol}$? (What is the formal name of this chemical?) \qquad
3. Balance the following equation ___ $+\ldots \mathrm{H}_{2} \mathrm{O} \rightarrow \ldots \mathrm{H}_{3} \mathrm{PO}_{4}$
ans from \#2
4. If you have $1.6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$ and an excess of \qquad (from \#2), how much $\mathrm{H}_{3} \mathrm{PO}_{4}$ will you make in moles?
5. If you have 17.8 g of \qquad (from \#2), how much $\mathrm{H}_{2} \mathrm{O}$ in grams will you need to complete the reaction?
6. How many molecules do you have in 1.8 g of \qquad (from \#2)? How many atoms do you have?
7. If you have 8 g of \qquad (from \#2) and 10 g of $\mathrm{H}_{2} \mathrm{O}$, how many grams of $\mathrm{H}_{3} \mathrm{PO}_{4}$ will you be able to make?
8. How much excess reagent will you have? (in grams)
9. Looking at the compound, $\mathrm{H}_{3} \mathrm{PO}_{4}$, What \% by mass is oxygen?
10. Let's say you performed the reaction in $\# 7$ and measured 10 g of $\mathrm{H}_{3} \mathrm{PO}_{4}$ at the end. Calculate a $\%$ yield.
11. Calculate the average atomic mass for Phosphorus. P's two isotopes are ${ }^{30} \mathrm{P}(29.9986 \mathrm{amu})$ and
${ }^{32} \mathrm{P}$ (32.9776 amu). They are 67.39% and 32.61% abundant, respectively.
12. If you have 4.0 moles each of \qquad (from \#2) and $\mathrm{H}_{2} \mathrm{O}$, what will be found in the product mixture at the end, in moles?

WEAKEST LINK ANSWERS:

1. $\mathrm{O}_{5} \mathrm{P}_{2} \quad$ 2. $\mathrm{O}_{10} \mathrm{P}_{4} \quad$ 3. Coefficients 1,6 , and 4 respectively
2. 1.1 moles 5.6 .78 grams of water
3. 3.8×10^{21} molecules or 5.3×10^{22} atoms
4. $0.113 \mathrm{v} \mathrm{mol} \mathrm{H}_{3} \mathrm{PO}_{4}$
5. 6.95 grams water remaining
6. 65.3%
7. 90.1%
8. 30.97 amu
9. 3.3 moles $\mathrm{O}_{10} \mathrm{P}_{4}$ remaining, 2.7 moles $\mathrm{H}_{3} \mathrm{PO}_{4}$ (product)
