)

1. MEASURING MASS

A. AMU's . . . What are they?

The mass of an atom is determined by what?

e'	9.1095 X 10 ⁻²⁸ grams	negligible amu
\mathbf{P}^+	1.67252 X 10 ⁻²⁴ grams	00
n ^O	1.67495 X 10 ⁻²⁴ grams	

**Notice that n^O is more massive than a proton, why?_____

**Is 10⁻²⁴ grams very convenient to deal with?_____

B. AMU ($1 \text{ AMU} = \text{mass of } 1.0 \text{ P}^+ \approx \text{mass of } 1.0 \text{ n}^{\circ}$

C. All atomic masses on the periodic table are relative to the mass of

EX: Using a mass spectrometer, hydrogen has been found to be 8.400% as massive as C-12. How many AMUs are in a hydrogen atom?

2. MOLAR MASS AND THE MOLE

- A. A scientist said, "one atom of C-12 has been set to weigh exactly 12.0 AMU....Okay, I like the number 12.0 and I really don't want to re-write the periodic table, but I would like to measure in something more convenient, like grams. Isn't the ratio of mass the same if we use grams instead of the original amus? I wonder how many atoms are in 12.0 grams of C-12?" This idea led to Avagodro's number!
- B. 1 mole (mol) = _____ particles, the # of atoms found in 12.0 g of C-12.

EX: 1 atom of Na = _____ 1 mol of Na or 6.02×10^{23} Na atoms = _____

C. Molar Mass = mass of 1.0 mole of a substance. Units = _____

You can calculate the molar mass of anything. . . . elements, compounds, ions, volkswagens, etc. . .

EX: molar mass of methane $CH_{4 (g)}$ = 16.05 g/mol

- 3. ISOTOPIC ABUNDANCY
- If $1P^+ = 1 n^0 = 1$ AMU, then how do we get the decimal points on the periodic table?
- A. The masses on the periodic table represent the average mass and abundance of all of the for that element.
- B. Isotope:

EX:	⁶³ Cu	VS.	⁶⁵ Cu
Actual Mass	62.93 AMU		64.93 AMU
%Abundance	69.09%		30.91%

What's the weighted atomic mass for copper? (figure this out like you would your grade) EX: There are two isotopes for Cl, ³⁵Cl and ³⁷Cl. Which one is more abundant?

EX: There are three isotopes for H, ¹H, ²H, and ³H. Which one is more abundant?

4. PUTTING IT ALL TOGETHER. . .SIMPLE CONVERSIONS!

$GRAMS \iff MOLES \iff \#OF PARTICLES$

EX: How many sugar molecules are in 2.3 grams of glucose, C₆H₁₂O₆?

EX: How many C atoms are in the above sample?

EX: How many atoms are there total?

5. <u>PERCENT COMPOSITION</u>% by mass of each element in a compound

 $\%A = \underline{\text{grams}A} X 100$ grams total

EX: calculate the % water in the hydrate, magnesium sulfate heptahydrate.

Following the above procedure, you should be able to find the percent composition for any compound!!!