NOTES#18/STANDARD ENTHALPY OF FORMATION AND RXN/AP CHEMISTRY

I. FORMATION RXNS: a. Standard Enthalpy of Formation: the	heat that is released or absorbed when
of a compound is formed (from it's ele at a pressure of 1 atm.	ements in their)
EX: Write the formation reaction for Methane, CH ₄	ΔH°f =
Write the formation reaction for $H_2O(I)$:	ΔH°f =
Or	
b. Trends for $\Delta H^{\circ}f$ values <i>Look at the table of common</i>	ΔH°f in your book (Appendix C)
- Notice that the $\Delta H^{\circ}f$ for an element in it's most st	able form is always
Q: What's more stable, O₂(g) or O₃(g) ?	
Q: What's more stable, C (graphite) or C (diamond)	?
- Notice that $\Delta H^{\circ}f$ values are almost ALWAYS	This means that the process of forming a
compound from elements is almost always	. Does this make sense?

II. Determining a $\Delta H^{\circ}f$ value.....TWO WAYS.

a. THE DIRECT METHOD - if a compound is *easily* made from it's elements, just carry out the reaction in a calorimeter and measure the heat produced!!!

EX: Measuring $\Delta H^{\circ}f$ for CO₂: C (graphite) + O₂(g) -----> CO₂(g) $\Delta H^{\circ}f = -393$ kJ Measuring $\Delta H^{\circ}f$ for P₄O₁₀ (s): P₄ (white) + 5 O₂(g) -----> P₄O₁₀ (s) $\Delta H^{\circ}f = ______(ok, so maybe there are limitations)$

b. THE INDIRECT METHOD - For reactions that are too complex or that do not go cleanly in a calorimeter.

- Use Hess's Law: if a reaction is the sum of several reaction steps, then the enthalpy change for the overall

reaction is ______of the enthalpy changes of the intermediate steps. In other words, when

reactants are converted into products, the change in enthalpy is the _____ whether the reaction takes place in one step or in a series of steps.

Ex: Calculate the $\Delta H^{\circ}f$ for $H_2S(g)$. $S(s) + H_2(g) \rightarrow H_2S(g) \Delta H^{\circ}f = ?$

The reaction enthalpies for the following reactions involving sulfur and hydrogen are well known from bomb calorimetry.

*How can you arrange these equations so that their SUM is equal to the formation reaction of $H_2S(g)$?

*If you need to, you can REVERSE a rxn (just change sign of ΔH) or Multiply/Divide through the coefficients.... EX1: From the following heats of combustion with fluorine, calculate the enthalpy of formation of CH₄.

First, what is the formation reaction for CH₄ (g)?_____

III. What can you DO with $\Delta H^{\circ}f$ values? You can use them to calculate ΔH for any reaction!!

- Rather than measuring a standard enthalpy change (ΔH°) using calorimetry for EVERY chemical reaction, chemists have devised a way to use the $\Delta H^{\circ}f$ values of compounds involved in a reaction. Enthalpies of formation can be used to predict the ΔH for any reaction for which $\Delta H^{\circ}f$ is known for all reactants and products. The relationship is:

ΔHrxn =	
---------	--

**A thoughtful aside..... Calorimetry is an *EXPERIMENTAL* way of determining ΔH° or ΔH_{rxn} . Using ΔH° f is a *THEORETICAL* way of determining ΔH° or ΔH_{rxn} .

EX2: Calculate the standard enthalpy of formation of octane, C_8H_{18} , given the following combustion reaction.

$2C_{8}H_{18}(I) + 25O_{2}(g) -$	> 16 $CO_2(g)$ + 18 $H_2O(l)$	∆Hrxn = -11,020 kJ	
∆H°f (CO₂, g) = -393.5 kJ/mol	ΔH°f (H2O, l) = -285.8 kJ/mol	$\Delta H^{\circ}f(O_2, g) = \kJ$	/mol