I. Calculating the specific heat of a metal $\quad q_{\text {metal }}=-\left[q_{H_{2} \mathrm{O}}+q_{c a l}\right]$

$$
\begin{gathered}
m_{\text {metal }} \cdot c_{\text {metal }} \cdot \Delta T_{\text {metal }}=-\left[\left(m_{\mathrm{H}_{2} \mathrm{O}} \cdot \mathrm{C}_{\mathrm{H} 2 \mathrm{O}} \cdot \Delta \mathrm{~T}_{\mathrm{H} 2 \mathrm{O}}\right)+\left(\mathrm{C}_{\text {cal }} \cdot \Delta T_{\text {cal }}\right)\right] \\
S_{\text {metal }}=-\left[\left(m_{\mathrm{H}_{2} \mathrm{O}} \cdot \cdot_{\mathrm{H}_{2} \mathrm{O}} \cdot \Delta T_{\mathrm{H}_{2} \mathrm{O}}\right)+\left(\mathrm{C}_{\mathrm{cal}} \cdot \Delta T_{\text {cal }}\right)\right] \\
m_{\text {metal }} \cdot \Delta T_{\text {metal }}
\end{gathered}
$$

Ex ONE: A 188.0 g sample of an unknown metal at $73.00^{\circ} \mathrm{C}$ was placed in a constant-pressure calorimeter containing 400.00 g of water at $22.00^{\circ} \mathrm{C}$. The final temperature of the system was found to be $24.00^{\circ} \mathrm{C}$. Calculate the specific heat of the metal. The heat capacity of the calorimeter is $100 . \mathrm{J} /{ }^{\circ} \mathrm{C}$. (Answer $=0.385 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$ )

## II. Using calorimetry data to calculate $\Delta H$

1. Use calorimetry data to calculate $\mathrm{q}_{\mathrm{rxn}} . \quad \mathrm{q}_{\mathrm{rxn}}=-\left[\mathrm{q}_{\mathrm{H} 2 \mathrm{O}}+\mathrm{q}_{\text {cal }}\right]$

$$
q_{r \times n}=-\left[\left(m_{\mathrm{H}_{2} \mathrm{O}} \cdot \mathrm{C}_{\mathrm{H}_{2} \mathrm{O}} \cdot \Delta T_{\mathrm{H} 2 \mathrm{O}}\right)+\left(\mathrm{C}_{\mathrm{cal}} \cdot \Delta T_{\mathrm{cal}}\right)\right]
$$

2. Calculate $G_{r \times n / g}$ or $q_{r \times n / m o l e}=$ or $\Delta H^{\circ}$ or $\Delta H_{r \times n}$

EXTWO: 1.105 grams of pentane $\left(\mathrm{C}_{5} \mathrm{H}_{12}\right)$ was combusted in a bomb calorimeter filled with 1000.0 g of water and an excess of $\mathrm{O}_{2}$ according to the following equation:

$$
\mathrm{C}_{5} \mathrm{H}_{12}(\mathrm{l})+8 \mathrm{O}_{2}(\mathrm{~g}) \text {---------> } 5 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

(a) If the heat capacity of the calorimeter is $1,800.0 \mathrm{~J} /{ }^{\circ} \mathrm{C}$ and the temperature of the calorimeter and water rose from $21.22^{\circ} \mathrm{C}$ to $30.18^{\circ} \mathrm{C}$, what is the $\mathrm{q}_{\text {rxn }}$ ? (Answer $=-53600 \mathrm{~J}$ )
(b) Calculate the heat released per gram of pentane. (Answer $=-48500 \mathrm{~J} / \mathrm{g}$ )

## III. Using $\Delta H_{r x n}$ or $\Delta H^{\circ}$ to solve calorimetry problems.

1. Use $\Delta H^{\circ}$ or $\Delta H_{r x n}$ to calculate $q_{r \times n}$.
2. Plug $\mathrm{q}_{\mathrm{rxn}}$ into calorimeter expression and solve for whatever.... $\mathrm{T}_{\mathrm{i}}, \mathrm{T}_{\mathrm{f}}, \Delta \mathrm{T}, \mathrm{C}_{\mathrm{cal}}$

$$
\begin{aligned}
& q_{\mathrm{rxn}}=-\left[\mathrm{q}_{\mathrm{H} 2 \mathrm{O}}+\mathrm{q}_{\mathrm{cal}}\right] \\
& q_{\mathrm{rxn}}=-\left[\left(\mathrm{m}_{\mathrm{H}_{2} \mathrm{O}} \cdot \mathrm{C}_{\mathrm{H}_{2} \mathrm{O}} \cdot \Delta T_{\mathrm{H} 2 \mathrm{O}}\right)+\left(\mathrm{C}_{\mathrm{cal}} \cdot \Delta T_{\mathrm{cal}}\right)\right]
\end{aligned}
$$

EXTHREE: $\quad 0.600 \mathrm{~g}$ of $\mathrm{B}_{5} \mathrm{H}_{9}(\mathrm{~s})$ was combusted in a calorimeter containing 1,000.0 g of $\mathrm{H}_{2} \mathrm{O}$. Predict $\Delta \mathrm{T}$ of water. Ccal $=1760 . \mathrm{J} /{ }^{\circ} \mathrm{C}$. (Answer $\mathrm{q}_{\mathrm{rxn}}=-43100 \mathrm{~J}$, temp $=7.25^{\circ} \mathrm{C}$ )

$$
2 \mathrm{~B}_{5} \mathrm{H}_{9}(\mathrm{~s})+12 \mathrm{O}_{2}(\mathrm{~g}) \cdots 5 \mathrm{~B}_{2} \mathrm{O}_{3}(\mathrm{~g})+9 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}=-9080 \mathrm{~kJ}
$$

## PRACTICE PROBLEMS

Ex FOUR: If we were to combine 123.51 mL of $0.110 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(a q)}$ with 157.22 mL of $0.125 \mathrm{M} \mathrm{KI}_{\text {(aq) }}$ (i). What is the balanced equation? (ii). What is the q of the process if $\Delta \mathrm{H}^{\circ}=-23.47 \mathrm{~kJ} / \mathrm{mol}$ of ppt ? (Answer $=-231 \mathrm{~J}$ )

Ex FIVE: Benzoic acid $\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}\right)$ is known to release $26.42 \mathrm{~kJ} / \mathrm{g}$ when completely combusted. What is the heat capacity of a calorimeter when 7.5840 g of benzoic acid is combusted in calorimeter containing $500.00 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$, and the temperature of the water and the calorimeter rose $9.98^{\circ} \mathrm{C}$ ? (Answer $\mathrm{q}_{\mathrm{rxn}}=-200,400 \mathrm{~J}, \mathrm{C}_{\mathrm{cal}}=18,000 \mathrm{~J} /{ }^{\circ} \mathrm{C}$ )

Ex SIX: 100.00 g of $38.42^{\circ} \mathrm{C}$ water was added to a calorimeter containing 72.45 g of $22.15^{\circ} \mathrm{C}$ water. The contents of the calorimeter ended up being $27.44^{\circ} \mathrm{C}$. What is the heat capacity of the calorimeter? (Answer $=565 \mathrm{~J} /{ }^{\circ} \mathrm{C}$ )

EX SEVEN: A 342.50 g sample of lead (specific heat $0.159 \mathrm{~J} / 9^{\circ} \mathrm{C}$ ) was taken from a beaker of hot water at $97.1^{\circ} \mathrm{C}$. The lead was placed into a calorimeter containing an unknown quantity of water at $23.1^{\circ} \mathrm{C}$. The heat capacity of the calorimeter was determined in a different experiment to be $93 \mathrm{~J} /{ }^{\circ} \mathrm{C}$. What is the mass of the water in the calorimeter if the final temperature of the calorimeter and its contents becomes $29.7^{\circ} \mathrm{C}$ ? (Answer $=110$ grams)

Ex EIGHT: A bomb calorimeter was calibrated using the combustion of benzoic acid. Through this process the heat capacity of the calorimeter was determined to be $654 \mathrm{~J} /{ }^{\circ} \mathrm{C}$. If the starting temperature of the calorimeter was $22.1^{\circ} \mathrm{C}$ and the temperature rose to $37.4^{\circ} \mathrm{C}$, how many grams of hexane $\left(\mathrm{C}_{6} \mathrm{H}_{14}\right)$ was combusted completely? (Answer $=0.207$ و hexane)

$$
2 \mathrm{C}_{6} \mathrm{H}_{14}(\mathrm{l})+19 \mathrm{O}_{2}(\mathrm{~g}) \text {-------------->>12} 12 \mathrm{CO}_{2}(\mathrm{~g})+14 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Delta \mathrm{H}_{\mathrm{rxn}}=-8334 \mathrm{~kJ}
$$

Ex NINE: A double displacement reaction took place in a coffee cup calorimeter that had a heat capacity of $76.4 \mathrm{~J} /{ }^{\circ} \mathrm{C}$. One reagent was 1000.00 mL of $0.990 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(a q)}$. The other reagent was 1117.38 mL of $\mathrm{KI}(a q)$ with an unknown molarity. Both solutions have a density of $1.030 \mathrm{~g} / \mathrm{mL}$. Both solutions started at $21.3^{\circ} \mathrm{C}$. After the precipitation took place the temperature rose to $23.4^{\circ} \mathrm{C}$. Assume the specific heat of each reagent is $4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$. If $\Delta \mathrm{H}^{\circ}=-23.47 \mathrm{~kJ} / \mathrm{mol}$ of ppt. What is the molarity of the KI solution? (Answer $=1.47 \mathrm{M} \mathrm{KI}$ )

