NOTES \#13 - Aq Chem I - Concentration Of Solution - AP Chemistry

I. Concentration of solution is....
a. The amount of \qquad present in a given quantity of solution or solvent.
b. It is most commonly expressed in MOLARITY (M).
II. MOLARITY (M) - the \# of moles in \qquad of solution.

$$
\mathbf{M}=
$$

*** Ex1: $1.46 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=$
a. Molarity, like density, is an \qquad property (does NOT depend on how much solute is present)
***Ex2:
1.46 moles $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in $1 \mathrm{~L} \ldots \ldots . .$.
$\mathrm{M}=$
OR
0.730 moles $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in 0.5 L
$\mathrm{M}=$
b. Molarity takes into account amount of solute ORIGINALLY dissolved in solution. Molarity does NOT actually reflect the true composition of solution.....
***Ex3: 1 M solution of KCl. What would you ACTUALLY see in solution?

$$
[\mathrm{KCl}]=\quad\left[\mathrm{K}^{+}\right]=\quad\left[\mathrm{Cl}^{-}\right]=
$$

***Ex4: 1 M solution of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \ldots .$. . What would you ACTUALLY see in solution?
$\left[\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}\right]=$
$\left[\mathrm{Ba}^{2+}\right]=$
$\left[\mathrm{NO}_{3}{ }^{-}\right]=$
c. What do you DO with Molarity?

1. Making STOCK SOLUTIONS: Determine the \# of moles (or grams) of solute needed to make a desired volume of a soln of known molarity (stock soln).
***Ex5: You want to make 500 mL of a 1.5 M soln of NaCl . How many moles and grams of NaCl do you need?
*** How would you literally MAKE such a soln?
2. Making DILUTIONS: Add a certain amount of \qquad to a known molarity of solution to obtain a molarity
THE KEY: Moles of solute after dilution EQUAL the Moles of solute before dilution. After all, you are just adding water, not removing or adding any solute.
***Ex6: How would you prepare 500 mL of a 0.40 M solution of NaCl from this 1.5 M solution of NaCl we just made?
3. Determine the MOLES of solute (NaCl) you need.
4. What VOLUME of 1.5 M solution contains only 0.20 moles of NaCl ?
5. What process would you use?
*** Notice that the MOLES OF SOLUTE are not changed by diluting. Another way of looking at it.....

$$
\mathbf{M}_{1} \mathbf{V}_{\mathbf{1}}=\mathbf{M}_{2} \mathbf{V}_{\mathbf{2}}
$$

${ }^{* * *} \operatorname{Ex} 7$: How would you prepare 200 mL of a 0.866 M NaOH solution, starting with a 5.07 M stock solution?

METHODS OF STUDY IN SOLUTIONS STOICHIOMETRY

I. General Information:

- Solution stoichiometry = QUANTITATIVE approach to rxns in aqueous solution
- Like we've seen before, it's all about balanced equations, moles, mole ratios, limiting reactants, etc...
- We're going to focus on THREE Quantitative Analysis Techniques:

1. GRAVIMETRIC ANALYSIS
2. ACID/BASE TITRATION
3. REDOX TITRATION
** ALL these techniques allow us to determine the concentration of s substance in a soln.
